Structural Behavior of the Ferromagnetic Spinels $\mathbf{A l}_{x} \mathbf{M o}_{2} \mathbf{S}_{4}$ and $\mathbf{G a}_{x} \mathbf{M o}_{2}-$ S_{4}, Containing Tetrahedral Clusters of Molybdenum Atoms

J. M. VANDENBERG* AND D. BRASEN
Bell Laboratories, Murray Hill, New Jersey 07974

Received July 19, 1974; revised September 16, 1974

Abstract

The structure of the ferromagnetic spinels $\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$ and $\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}(x \sim 0.5)$ was determined from powder diffraction data. The Al and Ga atoms order on the tetrahedral sites. The space group is $F 43 m ; a=9.726 \AA$ for $\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$ and $9.739 \AA$ for $\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$. The Mo atoms were found to shift towards the tetrahedral site vacancies, created by the lower Al and Ga concentrations. This results in tetrahedral clusters of Mo around the vacancies. Their semiconducting and magnetic behavior was explained on the basis of the structural behavior of the molybdenum lattice in these spinel compounds.

Introduction

Since Barz (I) reported the existence of the new ferromagnetic spinels $\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$ and $\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{Se}_{4}(x \sim 0.5-0.7)$, considerable effort has been directed to determine their structural and magnetic properties. Several other spinel compounds with similar compositions have been prepared, such as $\mathrm{Ga}_{x} \mathrm{~V}_{2} \mathrm{~S}_{4}, \mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$, and $\mathrm{Ga}_{x} \mathrm{Cr}_{2} \mathrm{~S}_{4}$ (2). X-ray diffraction shows that these spinels contain vacancies on the tetrahedral sites created by the lower Al and Ga concentrations. Attention was therefore focused on their magnetic superexchange interactions (2). The present X-ray study of the Mo spinels was undertaken to give a more detailed description of their structure in order to get a better understanding of their semiconducting and weakly ferromagnetic behavior.

Experimental and Structural Data

The powder samples were prepared from the elements; the detailed experimental procedure has been previously described (2). Based on X-ray identification, single phases were obtained at the compositions $\mathrm{Al}_{0.75} \mathrm{Mo}_{2}-$

[^0]S_{4} and $\mathrm{Ga}_{0.67} \mathrm{Mo}_{2} \mathrm{~S}_{4}$. The lattice constants are listed in Table I. Diffractograms were made with a Philips X-ray diffractometer, using $\mathrm{Cu} K_{\alpha}$ radiation. The intensities were measured with a planimeter. As previously reported (2), the intensities unambiguously showed the compounds to be normal spinels with A1 and Ga on the tetrahedral sites and Mo on the octahedral sites. The space group of the spinel structure is Fd 3 m . The presence of the extra reflections $h k 0, h+k=2 n$, which do not occur for a stoichiometric spinel $\mathrm{AB}_{2} \mathrm{~S}_{4}$, lead to the lower-symmetric space group $F \mathbf{4 3 m}$. The ideal atomic positions with the equivalent positions $\left(0,0,0 ; 0, \frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0\right)$ are as follows:
\[

$$
\begin{aligned}
& 4 \mathrm{Al}(\mathrm{Ga}) \text { in }(4 a): 0,0,0 ; \\
& (8 x-4) \square \text { in }(4 c): \frac{1}{4}, \frac{1}{4}, \frac{1}{4} ; \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 16 \mathrm{Mo} \text { in }(16 e): x, x, x ; x, \bar{x}, \bar{x} ; \bar{x}, x, \bar{x} ; \bar{x}, \bar{x}, x ; \\
& 16 \mathrm{~S}_{\mathrm{II}} \text { in }(16 e): x, x, x ; \text { etc.; } \\
& x=5 / 8 ; \\
& \\
& \hline
\end{aligned}
$$
\]

The eightfold tetrahedral position ($8 a, F d 3 m$) of the spinel splits into two fourfold tetrahedral positions ($4 a, 4 c$) in the lower-symmetric space group $F \overline{4} 3 m$. The Al and Ga atoms are crystallographically ordered on the position (4a), with the vacancies \square on (4c). The ordering would be complete for $x=0.5$.

TABLE I
Structural Parameters and Magnetic Data

$\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathbf{S}_{4}$		$\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$	
$a(\AA)$	9.726	$a(\AA)$	9.739
$x(\mathrm{Al})$	0.55	$x(\mathrm{Ga})$	0.52
$x_{\text {Mo }}$	$0.60{ }_{5}$	$\chi_{\text {Mo }}$	0.603
$x_{\text {S }}$	$0.36{ }_{3}$	$x_{S_{\text {I }}}$	$0.36{ }^{0}$
$x_{\text {SII }}$	$0.86{ }_{8}$	$x_{\text {SII }}$	$0.86{ }_{5}$
$R(\%)$	13.4	$R(\%)$	10.3
$P_{\text {effr }} / 4 \mathrm{Mo}$	$1.81 \mu_{\mathrm{B}}$	$P_{\text {cff }} / 4 \mathrm{Mo}$	$1.84 \mu_{\text {B }}$
Curie Temp.	18 K	Curie Temp.	18 K

Also, because of the lower symmetry of the space group, the positional parameter x of Mo is now variable and the 32 -fold position ((32a) in Fd 3 m) of the anions splits into two 16 -fold positions whose x parameters vary independently.

A special program was designed to minimize these parameters. Within the last few years a technique has been developed which showed that it was possible to determine the u parameter(s) of different space groups by analysis of X-ray diffraction data. Raccah et al. (3) developed a computer program which gives this analysis for the spinel structure (space group Fd 3 m). As an extension of this it was thought that the related but more general space group $F \overline{4} 3 m$ would lend itself to a similar type of analysis.

By means of a Fortran Program developed in this study it was possible to calculate theoretical relative intensities and thereby generate an agreement factor R similar to the one described by Raccah et al. (3). By inserting different x-parameters ($x_{\mathrm{Mo}_{0}}, x_{\mathrm{S}_{1}}, x_{\mathrm{S}_{4}}$), varying the composition and degrees of site mixing, and correcting for the Lorentz polarization, multiplicity, and anomalous dispersion, the theoretical intensities ($I_{\text {calcd }}$) were calculated. The program then takes $\sum I_{\text {calcd }}$ and $\sum I_{\text {obsd }}$ and generates a scaling factor ($S=\sum I_{\text {obsd }} / \sum I_{\text {calcd }}$). The proper choice of variables was selected by minimizing the R parameter:

$$
R=\frac{\sum\left|I_{\mathrm{c}}-I_{\mathrm{o}}\right|}{\sum I_{\mathrm{o}}}
$$

Starting with the ideal positions for Mo ($x=5 / 8$) and $\mathrm{S}(x=3 / 8 ; 7 / 8), x_{\mathrm{Mo}}$ was varied while holding the other variables constant until the R-parameter was minimized with respect to $x_{\mathrm{M}_{0}}$. Next, $x_{\mathrm{S}_{\mathrm{I}}}$ and then $x_{\mathrm{S}_{\mathrm{I}}}$ were varied to reduce R further, and finally different compositions and degrees of site mixing were used to minimize R and thereby get the best agreement between $I_{\text {calcd }}$ and $I_{\text {obsd }}$. The final atomic parameters are listed in Table I and, based on these parameters, a comparison of observed and calculated intensities is given in Table II.

Discussion

The structure shows some interesting features. The atomic parameters show that the S_{I} atoms, out of their ideal positions, shift away from the vacancies along the body diagonals of the octant of the unit cell (Fig. 1). In the same way the $S_{\text {II }}$ atoms shift away from the Al or Ga atoms. The interatomic distances are listed in Table III. The Mo positions, however, are the most interesting aspect of the structure. The Mo atoms shift considerably from their ideal positions towards the vacancies \square on the tetrahedral sites (Fig. 1). This results in tetrahedral clusters of Mo around the vacancies. The Mo-Mo distances within the clusters is very short, $\sim 2.85 \AA$. The shortest Mo-Mo distance between the clusters is very large, $\sim 4.00 \AA$.
It is well known that Mo, particularly among halides, chalcogenides, and pnictides, shows a strong tendency towards intermettallic bonding by forming clusters with distances in the range of $2.70-2.95 \AA$. For instance pairs of Mo occur in MoCl_{3} (4), octahedral clusters (5) in $\mathrm{MoX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and chains of Mo in $\mathrm{MoBr}_{3}(6)$. They are diamagnetic or weakly temperature-dependent paramagnetic (4); their physical properties are mainly determined by the bonding mechanism within the clusters (7).

Among the chalcogenides and pnictides Mo forms for instance zigzag chains in compounds such as $\mathrm{Mo}_{2} \mathrm{~S}_{3}(8), \mathrm{CoMo}_{2} \mathrm{~S}_{4}$ (9), and $\mathrm{Mo}_{2} \mathrm{As}_{3}(10)$, triangular clusters in MoN (11) and octahedral clusters in $\mathrm{Mo}_{3} \mathrm{Se}_{4}(12)$ and $\mathrm{PbMo}_{6} \mathrm{~S}_{8}$ (13); the phosphides show a

TABLE II
Observed and Calculated Powder Diffraction Data

$\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$					$\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$				
$h k l$	$10^{4} \sin ^{2} \theta_{\text {o }}$	$10^{\circ} \sin ^{2} \theta_{\text {c }}$	I_{0}	$I_{\text {c }}$	$h k l$	$10^{4} \sin ^{2} \theta_{0}$	$10^{4} \sin ^{2} \theta_{\text {c }}$	I_{0}	$I_{\text {c }}$
111	189	188	86.8	100	111	187	188	71.1	78.9
200	252	252	14.7	13.3	200	249	251	30.0	32.8
220	503	503	6.4	5.3	220	499	501	17.4	20.6
311	692	691	56.2	67.4	311	687	689	94.8	100.0
222	756	754	2.0	4.8	222	750	752	9.5	9.2
400	1007	1005	96.2	94.3	400	1001	1002	93.2	90.6
331	1195	1194	35.4	37.7	331	1188	1190	47.4	45.1
420	1257	1256	1.0	0.7	420		1253	0	0.3
422	1508	1508	37.4	35.6	422	1500	1504	51.4	55.7
333	1697	1696	60.0	51.5	333	1687	1691	93.2	80.3
511					511				
440	2010	2010	64.2	64.0	440	1999	2005	88.5	79.8
531	2200	2199	6.0	5.4	531	2197	2193	1.6	1.3
442	2259	2258	6.7	5.0	442	2251	2252	11.1	7.8
600					600				
620		2509	0	0.6	620		2502	0	0.2
533	2698	2697	1.5	2.5	533	2690	2690	3.9	3.9
622		2760	0	0.1	622		2752	0	0.4
444	3013	3011	16.4	14.4	444	3002	3002	13.4	12.1
551	3201	3199	19.1	16.7	551	3189	3190	16.6	18.7
711					711				
640	3265	3261	7.0	4.9	640	3252	3253	11.7	7.8
642	3514	3512	13.3	13.5	642	3501	3503	20.5	22.7
553	3702	3700	18.3	19.2	731	3689	3690	22.1	24.9
731					553				
800	4013	4014	5.5	6.6	800	4003	4003	7.9	7.4
733	4202	4202	13.5	12.9	733	4190	4191	14.2	16.2
644		4265	0	1.5	644		4253	0	1.2
820					820				
660	4516	4516	26.8	21.8	660	4503	4504	33.2	34.3
822					822				
555	4704	4704	4.0	5.4	751	4690	4691	6.3	7.9
751					555				
662	4765	4766	1.0	0.6	662	4749	4753	1.6	1.8
840	5018	5017	10.7	12.9	840	5003	5004	8.7	8.5
753	5206	5206	1.5	4.5	753	5192	5192	2.0	5.0
911					911				
842		5268	0	2.5	842	5252	5254	2.4	3.5
664	5518	5519	1.5	4.2	664	5505	5505	4.0	5.2
931	5707	5707	1.5	3.2	931	5693	5692	6.3	5.6
844	6017	6017	9.5	13.6	844	6004	6005	15.0	14.7

more complicated structural behavior but similar metallic networks are formed (14). In all these compounds the nearest-neighbor Mo-Mo distances vary from very short ones within the clusters to distances between the
clusters about $15-20 \%$ larger than in molybdenum metal. These are still metallic distances, in the range $3.20-3.30 \AA$. At least a two-dimensional metallic Mo lattice is maintained. The d electrons of Mo are delocalized

Fig. 1. Structure of the ordered spinels $\mathrm{Al}_{0.5} \mathrm{Mo}_{2} \mathrm{~S}_{4}$ and $\mathrm{Ga}_{0.5} \mathrm{Mo}_{2} \mathrm{~S}_{4}$. For some of the S and Mo atoms deviations from the ideal positions are indicated by arrows. The $16 \mathrm{~S}_{\text {II }}$ atoms occupy the same octants as Mo and four of them are indicated in one octant as II. Four of the $16 \mathrm{~S}_{\mathrm{I}}$ atoms, which occupy the remaining four octants, are indicated in one octant as I.

TABLE III
Interatomic Distances (\AA)

$\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$		$\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$	
Al-4S ${ }_{11}$	2.22	Ga-4S ${ }_{\text {II }}$	2.28
Mo-3S ${ }_{1}$	2.37	Mo-3S ${ }_{\text {I }}$	2.42
Mo-3S ${ }_{\text {II }}$	2.58	Mo-3S ${ }_{\text {II }}$	2.59
Mo-3Mo	2.89	Mo 3Mo	2.84
Mo-3Mo	3.99	Mo-3Mo	4.05
$\mathrm{S}_{1}-3 \mathrm{~S}_{1}$	3.11	$\mathrm{S}_{1}-3 \mathrm{~S}_{\text {I }}$	3.03
$\mathrm{S}_{\mathrm{I}}-3 \mathrm{~S}_{1}$	3.77	$\mathrm{S}_{1}-3 \mathrm{~S}_{1}$	3.86
$\mathrm{S}_{\mathrm{r}}-6 \mathrm{~S}_{\text {II }}$	3.45	$\mathrm{S}_{\mathrm{I}}-6 \mathrm{~S}_{\text {II }}$	3.46
$\mathrm{S}_{\mathrm{II}}-3 \mathrm{~S}_{\text {II }}$	3.25	$\mathrm{S}_{\text {II }}-3 \mathrm{~S}_{\text {II }}$	3.17
$\mathrm{S}_{\mathrm{II}}-3 \mathrm{~S}_{\text {II }}$	3.63	$\mathrm{S}_{\mathrm{II}}-3 \mathrm{~S}_{\text {II }}$	3.72
$\mathrm{S}_{\mathbf{I I}}-6 \mathrm{~S}_{\mathbf{I}}$	3.45	$\mathrm{S}_{\mathbf{I I}}-6 \mathrm{~S}_{\mathbf{I}}$	3.46

and the compounds are metallic, or semiconducting if the d band is filled. None of them shows a localized magnetic behavior of Mo. The molybdenum spinels are the first ones among these compounds where molybdenum clusters and at the same time shows a localized moment with a weakly ferromagnetic interaction (2). Looking at the crystal structure
(Fig. 1) it is obvious why this happens. The tetrahedral clusters of Mo are isolated, because the distance from one cluster to the other is at least $4.00 \AA$, which is no longer a metallic distance. In this way the magnetic moment is located on the isolated tetrahedral clusters. An interesting contrast appears in the superconducting compound $\mathrm{PbMo}_{6} \mathrm{~S}_{8}$ (15). As previously discussed (11), in this compound Mo forms octahedral clusters; the distances between the clusters are about 15% larger than in molybdenum metal. So, while in $\mathrm{PbMO}_{6} \mathrm{~S}_{8}$ the Mo clusters are still connected into a three-dimensional metallic lattice, this is not so for the spinels where the tetrahedral clusters are isolated.

The crystallographic results show that the concentrations of Al and Ga are close to $x=0.5$ A definite minimum for the R value was observed at $x \approx 0.5$, which is lower than the value of x obtained from preparation and X-ray identification; it corresponds to a complete ordering on the tetrahedral sites. This is also a more realistic value, because Mo is found to shift specifically towards the empty tetrahedral sites. This site is only completely vacant for $x=0.5$.
The magnetic susceptibilities ($1 / \chi$ vs T) of both spinels have a slope corresponding to a very low magnetic moment per Mo atom (2). However, if the magnetic moment is calculated per Mo_{4} cluster and the concentrations x are assumed to be 0.5 , then the effect magnetic moments are 1.81 and $1.84 \mu_{\mathrm{B}}$ (16) for $\mathrm{AlMo}_{4} \mathrm{~S}_{8}$ and $\mathrm{GaMo}_{4} \mathrm{~S}_{8}$, respectively (Table I). This corresponds to one unpaired electron located on the Mo_{4} cluster. If the valencies in these ordered systems are balanced, then their formal valence states are $\mathrm{Al}^{3+}\left(\mathrm{Mo}^{3+}\right)_{3} \mathrm{Mo}^{4+} \mathrm{S}_{8}$ and $\mathrm{Ga}^{3+}\left(\mathrm{Mo}^{3+}\right)_{3} \mathrm{Mo}^{4+} \mathrm{S}_{8}$. The total number of d electrons on the Mo_{4} clusters is 11 , an odd number. Apparently, ten of the d electrons are involved in intermetallic Mo-Mo bonds within the clusters and one d electron remains unpaired. This is similar to the behavior of cluster compounds of the transition-metal halides such as the $\left(\mathrm{Mo}_{6} \mathrm{X}_{12}\right)^{3+}$ and $\left(\mathrm{Ta}_{6} \mathrm{X}_{12}\right)^{3+}$ species, where an odd number of d electrons leaves one unpaired electron on the metal clusters (7,17). In all these compounds and also in the spinels low-spin metal clusters,
bridged by anions, are formed. The intercluster ferromagnetic interaction in the Mo spinels could be compared to the weak intercluster ferromagnetic spin coupling between nickel bridged tetramers in organometallic complexes (18). However, while in the molybdenum spinels the magnetic moment is already located on the low-spin state cluster, in the nickel complexes high-spin aligned states are created on the clusters at low temperatures, which then interact ferromagnetically through intercluster spin coupling (19).

From a structural point of view the formation of clusters in the spinels shows similarity to the cubane-like metal clusters, studied by Dahl et al. (20). These occur in metal complexes of the composition $\mathrm{M}_{4} \mathrm{X}_{4} \mathrm{~L}_{4 n}$, where $\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{S}^{2-}, \mathrm{OH}^{-}$, etc., and $\mathrm{L}=$ organic ligand. In the $\mathrm{M}_{4} \mathrm{X}_{4}$ core the metal atoms and anions X occupy alternate corners of a cube, resulting from two interpenetrating tetrahedra of M and X. In these complexes, the clusters form isolated units. Similar cubanes can be recognized in the spinels; however, they are not isolated and share corners. Two different types of cubanes can be distinguished in $\mathrm{Al}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$ and $\mathrm{Ga}_{x} \mathrm{Mo}_{2} \mathrm{~S}_{4}$. For convenience we consider the Al spinel only. One $\mathrm{Mo}_{4}\left(\mathrm{~S}_{\mathrm{I}}\right)_{4}$ cubane is centered around each vacancy and can be easily visualized around vacancy in center of unit cell (Fig. 1). It has four short Mo-Mo bonds of $2.89 \AA, 12 \mathrm{Mo}-\mathrm{S}_{1}$ bonds of $2.37 \AA$ and long $\mathrm{S} \cdots \mathrm{S}$ contacts of $3.77 \AA$. Bonding of each formally $\left[\mathrm{Mo}_{4}\left(\mathrm{~S}_{\mathrm{I}}\right)_{4}\right]^{5+}$ cubane in $\mathrm{Al}^{3+} \mathrm{Mo}_{4} \mathrm{~S}_{8}^{2-}$ can be described as follows. There are 11 electrons ($=4 \times 6$ ($4 d$ electrons of $\mathrm{Mo})-4 \times 2\left(\right.$ of $\left.\mathrm{S}^{2-}\right)-5$) on the Mo_{4} cluster, all Mo oxidation states being equal. One expects the four Mo-Mo bonds to be of bond order ~ 1 and one unpaired electron equally distributed among the 4 Mo atoms.

Each bonding $\mathrm{Mo}_{4}\left(\mathrm{~S}_{\mathrm{I}}\right)_{4}$ cubane, centered around each vacancy, is surrounded by (a) four nonbonding $\mathrm{Mo}_{4}\left(\mathrm{~S}_{11}\right)_{4}$ cubanes of the second type (upper left octant in Fig. 1); they have four Mo \cdots Mo contacts of $3.99 \AA, 12$ $\mathrm{Mo}-\mathrm{S}_{\text {II }}$ bonds of $2.58 \AA$ and four $\mathrm{S}_{\text {II }} \cdots \mathrm{S}_{\text {II }}$ contacts of $3.25 \AA$, (b) four ($\left.\mathrm{S}_{\mathrm{I}}\right)_{4}$ units with $\mathrm{S}_{\mathrm{I}} \cdots \mathrm{S}_{\mathrm{I}}$ contacts of $3.11 \AA$ (lower left octant in Fig. 1).

As inherent in the spinel structure, each Mo is a member of one bonding and one nonbonding $\mathrm{Mo}_{4} \mathrm{~S}_{4}$ cubane, each S_{I} is a member of one bonding $\mathrm{Mo}_{4}\left(\mathrm{~S}_{\mathrm{I}}\right)_{4}$ cubane and one $\left(\mathrm{S}_{\mathrm{I}}\right)_{4}$ unit and each $\mathrm{S}_{\text {II }}$ is just a member of one nonbonding $\mathrm{Mo}_{4}\left(\mathrm{~S}_{\mathrm{II}}\right)_{4}$ cubane. Each Mo is surrounded by six S atoms, assuming octahedral coordination and $d^{2} s p^{3}$ hybridization. The clustering of Mo can be better understood by comparing it with a more simple example such as NbCl_{4} (4) and $\alpha-\mathrm{NbI}_{4}$ (21). In these compounds the NbCl_{6} octahedra form chains by sharing edges; the Nb^{4+} ions have one unpaired d electron. Within these chains bonding $\mathrm{Nb}_{2} \mathrm{Cl}_{2}$ dimers with a short $\mathrm{Nb}-\mathrm{Nb}$ distance of $3 d_{\pi}$ type bonding involving two $3 d$ electrons of two Nb^{4+} and nonbonding $\mathrm{Nb}_{2} \mathrm{Cl}_{2}$ dimers with a long $\mathrm{Nb}-\mathrm{Nb}$ distance alternate; they share the two Cl atoms through an edge. In the same way bonding and nonbonding $\mathrm{Mo}_{4} \mathrm{~S}_{4}$ cubanes alternate in a threedimensional network, sharing corners.

Recentily, Burger and Dahl (22) discovered cubanes in the complex compound $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}-$ $\mathrm{Mo}_{4} \mathrm{~S}_{4}$ with short Mo-Mo distances of about $2.80 \AA$. The bonding in the cubane-like systems is discussed by Dahl et al. (20); the bonding in a three-dimensional network of cubanes as occurring in the spinels is a more complicated matter. However, it is extremely interesting to find similar structural behavior in spinels of transition metal chalcogenides and organometallic compounds.

Acknowledgment

The authors wish to thank Dr. B. K. Teo for helpful discussions.

References

1. H. Barz, Mat. Res, Bull. 8, 983 (1973).
2. D. Brasen, J. M. Vandfnberg, M. Robbins, R. C. Sherwood, J. Solid State Chem. (1975).
3. P. M. Raccah, R. J. Bouchard, and A. Wold, J. Appl. Phys. 37, 1436 (1966).
4. H. Schäfer and H. G. Schnering, Angew. Chem. 76, 833 (1964).
5. D. L. Kepert and K. Vrieze, "Halogen Chemistry" (V. Gutmann, Ed.), Vol. 3, Chapter I, Academic Press New York, 1967.
6. D. Babel, J. Solid State Chem. 4, 410 (1972).
7. F. A. Cotron, Quart. Rev. XX, 389 (1966).
8. R. de Jonge, T. Popma, G. A. Wiegers, and F. Jellinek, J. Solid State Chem. 2, 188 (1970).
9. J. M. Vandenberg, Inorg. Chim. Acta 2, 216 (1968).
10. F. Hulliger, "Structure and Bonding," Vol. 4, p. 141, Springer-Verlag, New York, 1968.
11. J. M. Vandenberg and B. T. Matthias, Mat. Res. Bull.9, 1085 (1974).
12. O. Bars, J. Guillevic, and D. Grandjean, J. Solid State Chem. 6, 48 (1973).
13. M. Marezio, P. D. Dernier, J. P. Remeika, E. Corenzwit, and B. T. Matthias, Mat. Res. Bull. 8, 657 (1973).
14. F. Hulliger, "Structure and Bonding," Vol. 4, p. 168, Springer-Verlag, New York, 1968.
15. B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Couper, and H. Barz, Science 175, 1465 (1972).
16. R. C. Sherwood, private communication.
17. D. L. Kepert, "The Early Transition Metals," pp. 242-244, Academic Press, New York, 1972.
18. A. P. Ginsberg, Inorg. Chim. Acta Rev. 5, 45 (1971).
19. A. P. Ginsberg and M. E. Lines, Inorg. Chem. 11, 2289 (1972).
20. L. F. Dahl, J. D. Sinclair and B. K. Teo, In "The Organic Chemistry of Iron" (E. A. Koerner, Ed.), to be published.
21. L. F. Dahl and D L Wampler, Acta Cryst. 15, 903 (1962).
22. T. Burger and L. F. Dahl, private communication.

[^0]: * Mailing address: J. M. Voorhoeve-Vandenberg, Bell Laboratories, Murray Hill, New Jersey 07974.

